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Figure 5. Protein expression and activity of PTP1B in the heart at 2, 10, and 20 weeks after aortic
banding. Protein expression of PTP1B (n=3) (A). In A: Data are mean SEM. Statistical analysis: Student
t test. PTP1B activity (n=6) (B). In (B): Data are least squares mean SEM. Statistical analysis: 2-way ANOVA
with the Holm-Sidak method for pairwise comparisons. Significantly different vs control: *. Significantly
different vs 2 weeks: a (within control or AoB). AoB indicates aortic banding; PTP1B, protein tyrosine

phosphatase 1B.

improved angiogenesis.?” Interestingly, we previously showed
that cIR is characteristic of MI.” Here, we also found a strong
correlation between cIR and pressure overload-induced HF.

Figure 6. Left ventricular PTP1B activity in humans with normal
and reduced ejection fraction. n=3 in control, n=5 in AS with
normal ejection fraction (EF >50%), n=2 in AS with reduced
ejection fraction (EF <40%). Data are mean SEM. Statistical
analysis: 1-way ANOVA. Significantly different vs control: *, vs AS
(EF >50%): 8. AoB indicates aortic banding; AS, aortic stenosis;
PTP1B, protein tyrosine phosphatase 1B.

Therefore, although the studies by Gomez et al and Gogiraju
et al did not assess cardiac insulin response, it is also
possible that enhanced cardiac insulin sensitivity contributed
to the favorable effects of PTP1B inhibition. Taken together,
studies on the role of PTP1B in cardiac disorders have thus far
focused on endothelial function and angiogenesis. By linking
PTP1B to cardiac insulin action and contractile function, our
findings are in line with previous results, but also reveal a
novel mechanism potentially accounting for the benefits of
PTP1B inhibition.

Impaired insulin signaling has been associated with
mitochondrial dysfunction in diabetes mellitus and cardiac
disorders.*?® However, it remains a matter of debate whether
mitochondrial dysfunction results in insulin resistance or vice
versa.??3% By showing, for the first time, that cIR accompa-
nies, but develops before mitochondrial dysfunction, our
results may support a role for cIR in the pathophysiology of
HF.

In fact, there is accumulating evidence suggesting insulin
signaling as a key regulator of mitochondrial function. In
human skeletal muscle, insulin stimulates the synthesis of
mitochondrial proteins and mitochondrial ATP production.®’
Similarly, perfusing rat hearts with insulin increases mito-
chondrial protein synthesis and respiration.>? Insulin plays a
crucial role for mitochondrial function given that impaired
insulin signaling alone is capable of inducing mitochondrial
defects. For example, disrupting the insulin receptor in
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myotubes impairs PGC-1a signaling and mitochondrial bioen-
ergetics.>® In the heart, deletion of the insulin receptor
promotes oxidative stress and diminishes mitochondrial
respiratory capacity.>* Consistently, cardiomyocyte-specific
loss of the insulin receptor accelerates cardiac mitochondrial
dysfunction and thereby worsens left ventricular function and
survival in mice with ML Therefore, it is reasonable to
postulate that the development of cIR in pressure-overloaded
hearts was an important trigger of mitochondrial dysfunction.
The specific mechanisms how cIR affects mitochondria are
still unclear. However, because insulin resistance may impair
PGC-1o signaling®® and the dynamics of PGC-1a gene
expression (Figure 2A) resemble that of cardiac insulin
sensitivity, we assume that PGC-1a. may be involved.

There are further interesting aspects of our results that
need to be discussed. First, we found a consistent biphasic
response of state 3 respiration. In contrast, changes in mRNA
expression of mitochondrial complex proteins and regulators
are divergent and do not reveal a specific pattern. The
mechanisms accounting for the discrepancies between gene
expression and mitochondrial respiration remain undefined
and may be interesting for future investigations.

Second, we found that Akt phosphorylation was increased
at 2 and 10 weeks, but unchanged at 20 weeks (Figure 4A),
which was independent of cIR. Although Akt plays a key role
in mediating insulin effects on glucose metabolism, Akt is also
involved in hypertrophic signaling.®*3® Because the changes
in Akt phosphorylation are in concert with those in heart
weight (rapid gain from 2 to 10 weeks; Table 1), Akt appears
to be primarily regulated by hypertrophic signals in our model.
Of note, recent evidence suggests that chronic activation of
Akt may affect mitochondrial biogenesis and function.®” Thus,
it is possible that the prolonged activation of Akt also
contributed to mitochondrial dysfunction.

Third, the fact that insulin-stimulated tyrosine phosphoryla-
tion of IRB was normal at 10 weeks (Figure 4E), but PTP1B
activity was increased (Figure 5B) and cIR was already manifest
at this time point (Figure 3B through 3D), suggests additional
targets for PTP1B downstream of the insulin receptor. Given
that PTP1B may also dephosphorylate IRS1,%® we speculate
that IRS1 phosphorylation may be affected by PTP 1B leading to
cIR at 10 weeks. In this study, we were not able to verify this
possibility because of the complex regulation of IRS1, which
includes at least 10 phosphorylation sites.?°

Fourth, we could only include 2 patients with reduced EF
for the measurement of cardiac PTP1B activity. Although
significance was reached attributable to the great differences
between groups, the small sample size certainly results in a
large confidence interval.

Finally, although we provide evidence supporting a role for
PTP1B in cIR and HF, a definitive mechanistic link remains to
be validated. For this purpose, specific manipulations of

PTP1B activity and insulin sensitivity in pressure-overloaded
hearts would be necessary.
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Figure S1. Changes in mRNA expression of genes regulating mitochondrial biogenesis.
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Figure S2. Changes in mRNA expression of mitochondrial respiratory chain complex

subunits.
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Figure S3. Changes in Akt and IRS1 signaling at 2, 10 and 20 weeks after aortic banding.
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