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Figure 7. IKKb regulates vascular smooth muscle cells (VSMC) calcification through its kinase-independent function. A,
Representative Western blots and densitometric analysis of active b-catenin/GAPDH and Runt-related transcription factor 2
(Runx2)/GAPDH expression in cultured VSMCs isolated from wild-type (WT) mouse with stimulation by interleukin (IL)-1b (2.5 ng/
mL) or the vehicle for 15 minutes. Bars represent the mean�SD (t test, n=3). B, Kinase-dead IKKb transgene construct. C,
Representative Western blots and densitometric analysis of IKKb/GAPDH, phosphorylated p65/total p65 expression in VSMCs
isolated from kinase dead (KD) and IKKb knockout (KO) mice. Bars represent the mean�SD (t test, n=3). D, Representative
microscopy images of Alizarin Red staining of 4-week cultured VSMCs isolated from WT and KD mice and quantification of VSMC
calcification. Calcification was quantified by ImageJ software. Graph presented is the percentage of positively stained area in the total
area randomly selected. Bars represent the mean�SD (t test, n=6). E, Results of quantitative real-time PCR (qRT-PCR) for the
expression of various osteogenic-related genes (osterix, alkaline phosphatase [ALP], and osteocalcin) in WT, KD, KO, and kinase
active IKKb (KA) cells that were normalized to the Rn18s mRNA level. WT samples used in RT-PCR were from littermate of KO mouse.
Cells used in qRT-PCR were cultured for 2 weeks in normal medium with 10% fetal bovine serum. Bars represent the mean�SD (1-
way ANOVA, n=4). **P<0.01, ***P<0.001.
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in vitro from the molecular level. Furthermore, considering the
similarity between bone formation and vascular calcification,
it is interesting that previous reports on bone research
showed that statin can enhance bone formation.40–42

Although the roles of b-catenin in vascular calcification and
bone formation have been well analyzed, as previously
mentioned, those of IKKb/NF-jB signaling have not been

adequately unveiled to date. In the bone research, it was
reported that the deletion of IKKb significantly enhanced bone
formation by activating b-catenin ubiquitination and degrada-
tion.43 As its mechanism, Lamberti et al reported that IKKb
interacts with and is able to phosphorylate b-catenin,44 and
Chang et al reported that IKKb promotes its ubiquitination.43

In this study, the nonphosphorylated active form of b-catenin
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is suppressed and its ubiquitination is augmented in KD
VSMCs. The detailed mechanism of how IKKb regulates
b-catenin in a kinase-independent manner is still unclear and
is to be unveiled. However, this finding would be of high
importance considering that kinase-independent function of
IKKb has never reported, except by us.32 b-Catenin is the big
target of interest, and it has been researched in many fields,
including cancer, fibrosis diseases, and vascular calcification.

Considering that kinase-independent function of IKKb
regulates calcification, as shown in this study, the regulation
of protein expression of IKKb should be more carefully
recognized. Interestingly, IKKb is the target of miR148a,
miR503, and miR199a,45–47 which are upregulated micro-
RNAs in vascular calcification.48,49 The suppression of such
microRNAs targeting IKKb might be a new strategy against
vascular calcification.

The findings in this study explain not only the difference
between atherosclerosis and calcification but also the disap-
pointing results reported in clinical studies that examined the
effect of aspirin on calcification. Aspirin has a suppressive
effect on inflammatory responses, including NF-jB. Indeed, Yin
et al reported that aspirin is a specific inhibitor of IKKb.50

Therefore, people expect that aspirin use would have a
protective effect against calcification; however, recent clinical
studies have found that coronary calcification was associated
with aspirin use51 and that aspirin had no protective effect on
the onset of calcification in either coronary arteries or aortic
valves. The anticalcification effect of IKKb revealed in this study
might explain these results. Furthermore, we have previously
reported that long-term and high concentration of aspirin can
suppress the protein expression of IKKb,52 which might
indicate possible modification of kinase-independent function
of IKKb by aspirin. These new insights can lead to unveiling a
new relationship between vascular calcification and aspirin use.

There are strengths and limitations in this study. The
strength is that kinase-independent function of IKKb in
suppressing calcification is unveiled. The kinase-dependent
functions of IKKb have been well analyzed; however, its
kinase-independent function has been rarely reported, except
in our previous study.32 Therefore, its roles in diseases are
almost unknown. This study indicated its new function in
vascular calcification, which would attract interest of
researchers in the field of vascular diseases. On the other
hand, the limitation of this study is that we have not
evaluated the kinase-dependent roles of IKKb in the regulation
of calcification. Considering that KD-IKKb works similarly with
KA-IKKb in inhibition of calcification, kinase-independent
function would have a major contribution to the inhibitory
role of IKKb on calcification. However, it does not exclude the
involvement of kinase-dependent function of IKKb on calci-
fication. Some articles have reported that kinase activity of
IKKb regulates b-catenin.43,44,53 Indeed, in Figure 8A, the

expression of b-catenin and Runx2 in KA-IKKb cells is less
than that in KD-IKKb cells, despite less IKKb protein
expression, which implicates the involvement of kinase
activity of IKKb in regulation of these molecules. To explore
it precisely, transient expression of constitutive active p65
in vitro would be not suitable because long-term cell culture is
required for observing calcification. Future study of making
CaCl2 model on mice with modification of p65 or IjB in
VSMCs would make it clear.
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