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Figure 6. Halofuginone-mediated proteomic changes in cardiac fibroblasts. Normal human cardiac fibroblasts were incubated with 100 nmol/
L and 300 nmol/L halofuginone and 4 mmol/L t-proline for 24 hours. Proteins were extracted and analyzed with a mass spectrometry—based
quantitative proteomics approach. A through C, Scatter plot representation of relative protein abundances obtained for different treatment
conditions compared to vehicle-treated cells. The 2 axes are relative abundance (log 2-fold change) from 2 different replicates in this
experiment. Proteins with significantly altered abundance (P<0.05) compared with untreated samples are displayed in orange. D, A heat-map
representation of extracellular matrix proteins displaying significant abundance changes from cells treated with halofuginone compared to
vehicle (average of n=2). Upregulated proteins are shown in red; downregulated proteins are shown in blue.

together, these results demonstrate the necessary and
sufficient role of GCN2 in regulating the AAR when activated
by halofuginone. In addition, the ability of L-proline (but not -
threonine) supplementation to block virtually all of the effects
of halofuginone evaluated in this study suggest a highly
selective and reversible cellular action of halofuginone
consistent with competitive inhibition of prolyl-tRNA syn-
thetase.

Reducing amino acid intake, especially essential amino
acids, has been shown to activate the AAR and reduces food
consumption, leading to caloric restriction and decreased
body weight."® ' In our in vivo studies, halofuginone at high
does (1-3 mg/kg) activated the AAR and reduced food intake
and body weight. However, the cardioprotective effects of

halofuginone could not be attributed to caloric restriction
because pair-fed controls exhibited similar pathology to a
control Angll/PE group that was fed ad libitum. In addition,
halofuginone treatment also reduced the effects of cardiac
stress at lower doses that did not affect food intake or body
weight. These results rule out potentially confounding effects
of caloric restriction and support activation of the AAR as a
principal action of halofuginone in these studies.

Potential mechanisms underlying the cardioprotective
actions of halofuginone were evaluated in human cardiac
fibroblasts and iPSC-derived cardiomyocytes. In a cardiac
fibroblast collagen deposition assay, halofuginone and
amino acid deficiency abolished spontaneous collagen
production and deposition by limiting collagen gene
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Figure 7. Halofuginone effects in cardiomyocytes. Human induced pluripotent stem cell-derived
cardiomyocytes were treated with 1 nmol/L endothelin-1 (ET-1), 200 nmol/L halofuginone (Halo),
2 mmol/L t-threonine, and/or 2 mmol/L -proline for 24 hours. Total cellular RNA was harvested, and
NPPA (proatrial natriuretic peptide) mRNA expression was examined by real-time reverse transcription
polymerase chain reaction analysis (A), N=3 for each treatment condition. One-way ANOVA with Tukey post
hoc analysis: ****P<0.0001. The protein level of p62 was detected by Western blot (B). The level of LC3B
was detected by immunohistochemistry (C). One representative of 2 experiments was shown for B and C.

transcription at concentrations that had no effect on cell
count or cell health. In addition to type | collagen,
halofuginone (100-300 nmol/L) significantly downregulated
40 to 50 ECM-related proteins, suggesting a powerful effect
on extracellular matrix remodeling consistent with the
reduction in hydroxyproline content observed in vivo. This
powerful effect on the ECM occurs at both the transcrip-
tional level (MRNA) and translational level (protein) and may
be related to recently described attenuation of TGFp-
mediated ALK5/SMAD2/3 signaling.?® In addition, halofug-
inone could also impact myofibroblast differentiation shown
by the 6-fold downregulation of aSMA mRNA (Table S2).
However, differential effects of ALK5 inhibitors and

halofuginone on collagen deposition (data not shown)
suggest that further work is needed to understand the
role of TGFP signaling in mediating halofuginone actions.
The effects of halofuginone on pathologic hypertrophic
signaling were evaluated in human iPSC-derived cardiomy-
ocytes. Specifically, ET-1 was used to activate the Gogq
hypertrophic pathway and regulation of the pathological gene
program, as exemplified by NPPA mRNA upregulation.
Halofuginone abolished ET-1 mediated upregulation of NPPA
mRNA, representing the first description of blockade of Gag-
mediated cardiac hypertrophic gene expression by tRNA
synthetase inhibition. However, it is not known precisely how
tRNA synthetase inhibition abolishes ET-1-mediated Goqg
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Figure 8. Mechanisms of halofuginone action. Under normal conditions, prolyl-tRNA is aminoacylated
with L-proline by prolyltRNA synthetase and made available for protein synthesis. Halofuginone inhibits the
action of prolyl-tRNA synthetase and in turn generates elevated levels of uncharged prolyl-tRNA that can
bind GCN2 (general control nonderepressible 2). Once bound by uncharged tRNA, GCN2 is activated by
autophosphorylation and then phosphorylates elF2a. (eukaryotic translation initiation factor 2a), which
leads to gene transcription and activation of the AAR (amino acid response) pathway.

activation and subsequent Ca”"/calcineurin/NFAT- depen-
dent and/or MAPK-dependent regulation of gene transcrip-
tion (for review see Mudd and Kass?'). This is an important
area for future investigation.

Halofuginone also significantly enhanced indices (LC3B,
p62) of autophagy in cardiomyocytes similar to amino acid
deprivation, which also activates autophagy through a GCN2-
dependent mechanism (reviewed in Carroll et al®?). In
addition, overexpression of the constitutively active GCN2
mutant mimicked the effects of halofuginone by robustly
increasing p-GCN2 and p-elF2a and increasing the LC3B I1/1
ratio, suggesting enhanced autophagic flux (Figure S8).
Halofuginone regulation of autophagy may be related to
GCN2/elF2a-dependent expression of critical autophago-
some components23 and/or inhibition of amino acid activa-
tion of mTOR (a critical regulator of autophagy). Notably there
was no regulation of E3 ubiquitin ligase mRNA levels such as
Murf (SMURF1), Atrogin (FBX032), or Parkin (PARK2) with the
exception of SMURF2 (up 2.2-fold) by halofuginone (Table S2).
Of note, it was recently reported that amino acid starvation
leads to induction of Sestrin2 in a GCN2/ATF-dependent
manner, which sustains the repression of mTORC1.%*

The robust effects of halofuginone at the level of the
cardiac fibroblast and cardiomyocyte are likely to play
important roles in mitigating the effects of cardiac stress.
However, we cannot rule out important known systemic
actions of halofuginone related to tRNA synthetase inhibition.
Specifically, halofuginone has powerful anti-inflammatory
effects mediated by inhibition of Th17 signaling that are
protective in a number of disease models such as autoim-
mune encephalomyelitis and graft-versus-host disease.”?%2°
It is noteworthy that an imbalance of Th17 cells has been
reported in patients with chronic heart failure?” and is
correlated with the severity of myocardial dysfunction in a rat
model of heart failure.?® Therefore, halofuginone may also
limit cardiac stress through inhibition of Th17 cells.

A recently reported study conducted in GCN2 knockout
mice does not appear to support the beneficial effects of
halofuginone-mediated GCN2 activation described in our
present study.” In fact, these investigators found that
GCN2-knockout mice exhibited reduced contractile dysfunc-
tion, lung congestion, and inflammation following cardiac
stress induced by TAC. The explanation for this discrepancy
most likely lies in the fundamental differences between
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genetic and pharmacologic manipulation of the pathway. The
episodic modulation of a specific activity within a pathway as
expected by pharmacologic manipulation may cause effects
very different from a permanent ablation of a protein having
multiple actions and interactions. This is analogous to
reported phenotypic differences observed between genetically
engineered knockout and catalytically dead knockin mouse
models.>° Nonetheless, the precise mechanism that account
for these differences remain to be determined.

As mentioned above, CHOP expression was used in the
present study as a marker of elF2a activation by the AAR.
However, CHOP is an important integrated stress response
mediator regulating oxidative stress and apoptosis and is
likely to play a role in the protective effects of halofugi-
none.®"%? However, the effects of CHOP appear to be
complex, demonstrating protection when knocked out in the
setting of cardiac pressure overload and in ischemia and
reperfusion®*** and deleterious when knocked out in a
mouse model of myocardial infarction caused by permanent
coronary artery ligation.®® Further studies are required to
determine the role of CHOP in mediating the cardioprotective
effects of halofuginone/AAR.

Despite the compelling effects to reduce cardiac stress,
activation of the AAR by inhibiting tRNA synthetase is likely to be
problematic if prolonged. In this regard, a reduction of the
intracellular pool of charged tRNA and inhibition of protein
translation through p-elF2a would be expected to significantly
reduce synthesis of essential proteins. In fact, halofuginone
exhibits significant cellular toxicity at concentrations >1 umol/
L in cardiac fibroblasts (data not shown) and has a limited safety
window in mice.® These liabilities are further compounded by
the significant accumulation of halofuginone in liver, kidney, and
other organs.®® Thus, the limitations of activating the AAR by
inhibition of tRNA synthetase may be mitigated by intermittent
dosing regimens and/or by inhibitors with improved distribution
and clearance properties. Furthermore, future studies will be
needed to determine if strategic deprivation of dietary amino
acids could be used to blunt the effects of cardiac stress.

In summary, our studies demonstrated that halofuginone
acts selectively to activate the AAR pathway, and its actions
in vivo blunt the effects of cardiac stress in the failing
myocardium. Activation of AAR appears to mediate the
antihypertrophic, antifibrotic, and autophagic effects of
halofuginone and represents a compelling and novel approach
to the treatment of heart failure (Figure 8).
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