




mitochondria displayed a range of hexokinase activities at the
end of ischemia from 30 to 90 mU/mg protein (Figure 8A).
Importantly, when mtHK enzymic activity was plotted against
infarct size, there was a strong inverse correlation (Figure 9A)
that Western blotting revealed was due to changes in mtHK2
(Figure 8B and 8C). These data provide further evidence for
the importance of mtHK2 in cardioprotection and are
consistent with mtHK2 acting to inhibit OMM permeabiliza-
tion, cytochrome c release, and ROS production. This would
lead to inhibition of mPTP opening on reperfusion. However, it
is important to note that our data could also be explained by
a direct inhibitory effect of mtHK2 on mPTP opening, which
has been proposed by others.13,14

Mechanism of mtHK2 Dissociation From
Mitochondria in Ischemia
Permeabilized fibers provide an ideal system in which to study
the mechanism and regulation of mtHK2 dissociation from
mitochondria that may account for its loss during ischemia and
the modulation of this by IP and other interventions. Although
the release of mtHK2 from isolated mitochondria incubated
with G-6-P has been described by others,26 we were unable to
achieve this in permeabilized fibers unless we also reduced the
pH to <7 (Figure 5). The optimal pH for dissociation was found
to be 6.3 at 4°C with less dissociation at more acid pH values
(Figure 5B). The bell-shaped dissociation curve suggests the
involvement of 2 ionizable groups in the binding of mtHK2 to
mitochondria. One of thesemay be the histidine (pKa 6.0) that is
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Figure 8. Effect of ischemia following different preischemic interven-
tions on mtHK activity and mtHK2 content. Hearts were perfused
according to the protocols described in Figure 1 and submitted to
30 minutes of global ischemia. Mitochondria were isolated (Polytron
method) and purified at the end of the ischemic period as described in
Materials andMethods. (A) The total hexokinase activity (isoforms 1 and
2, mtHK) of isolated purified mitochondria for each group. (B) Typical
Western blots performed on the corresponding samples (A) for the
mitochondrial isoform2 (mtHK2) and ANT. (C) The ratio ofmtHK2 to ANT
derived from scanning the blots. Data are presented as means�SEM
n=5 for each group. (A) ANOVA P<0.0001 among all groups, *P<0.05 vs
CP Isch Cont, **P<0.05 vs IP Isch Cont. (C) * P<0.05 vs IP, ** P<0.05 vs
corresponding control. CP indicates control; Ac, sodium acetate; HG,
high glucose; CaC, calcium challenge; IP, ischemic preconditioning;
mtHK2, mitochondria-bound hexokinase 2.

0

10

20

30

40

50

60

70

80

20 30 40 50 60 70 80 90 100

I.S
 (%

 o
f w

ho
le

 h
ea

rt
)

A

CP

CP+HG

CP+Ac
IP+HG

CP+CaC

IP

IP+Ac

End-isch mtHK activity
(mU / mg protein)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 40 60 80 100
End-isch mtHK activity

(mU / mg protein)

IP+Ac

IP

CP+CaC

IP+HG

CP+Ac
CP

CP+HG

B

m
tH

K
2 

to
 A

N
T 

ra
tio

Figure 9. End-ischemic mtHK2 content correlates with infarct size.
Heart were perfused as described in Figure 1. End-ischemic mtHK
activity and mtHK2 content were studied on isolated purified
mitochondria as shown in Figure 8. In a separate group of hearts
infarct size was assessed as shown in Figure 6C. (A) Infarct size (n=5
to 9 for each group as noted in Figure 6C) was plotted as a function
of end-ischemic mtHK activity (n=5 for each group). (B) End-ischemic
mtHK2 content (n=5 for each group) as a function of mtHK activity.
CP indicates control; Ac, sodium acetate; HG, high glucose; CaC,
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dria-bound hexokinase 2.
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present in the center of the hydrophobic N-terminal peptide
(MIASHMIACL in rat from accession number P27881) required
for mitochondrial binding.15 It is likely that this histidine needs
to be uncharged to insert into the OMM, and this would be its
predominant ionization state at physiological pH. As the pH falls
to <7, histidine becomesmore charged, favoring dissociation of
HK2. The other group involved may be the phosphate of G-6-P
whose pKa is 6.11. If G-6-P must be deprotonated to bind to
HK2, then as the pH drops to <6.1, its binding to HK2 would
diminish, preventing the conformational change required for
HK2 dissociation from the OMM. Together, these effects could
generate the G-6-P concentration and pH dependence
observed. Although HK2 is the major HK isoform in the heart,
there is some HK1,43 but this does not dissociate during
ischemia,8,11 perhaps because it does not have a histidine in the
equivalent N-terminal sequence (MIAAQLLAYY in rat from
accession number P05708).

To provide some indication as to whether the major cause
of HK2 dissociation during ischemia was G-6-P or low pH, G-6-
P content was determined in hearts at the end of ischemia in
4 groups of hearts showing a wide range of mtHK2—control,
control high glucose, IP, and IP plus acetate (Figure 14A). The
L-lactate content was also determined (Figure 15) as an
indicator of lactic acid production during ischemia and
showed a similar pattern to the rates of glycogen breakdown
determined from the glycogen content before and after
ischemia (Figure 6A and 6B). These data are consistent with
mtHK2 dissociation during ischemia being mediated by both
the drop in pH and the rise in G-6-P, with cardioprotective
protocols such as IP modulating either or both of these
parameters. However, this does not rule out additional
mechanisms such as phosphorylation of the voltage depen-
dent anion channel (VDAC) via the different protein kinase
pathways implicated in IP,14,15 although some of these such
as the Akt/glycogen synthase kinase-3beta (GSK3 beta)
pathway could exert their effects indirectly by enhancing
glycogen breakdown.

Role of mtHK2 Dissociation in OMM
Permeabilization and Cytochrome c Release
Although mtHK2 dissociation has been reported by others to
favor cytochrome c release.26 our data with permeabilized

Figure 10. mtHK2 dissociation alone does not affect OMM
permeabilization. Three groups of heart were studied as described
in Figure 1. Fibers were permeabilized and washed twice in
solution B at pH 6.3 (4°C) in presence of 10 mmol/L G-6-P as
described in the Materials and Methods section. (A) Oxygen
consumption of fibers in State 3 monitored in the absence (black
bar) or presence of 12.5 lmol/L exogenous cytochrome c (gray
bar, +Cc). (B) Absolute difference between rates of State 3
respiration of fibers measured in presence and absence of
12.5 lmol/L cytochrome c, respectively. Three groups of fibers
were studied as described in (A). In each individual group, fibers
were permeabilized and washed twice in a solution at pH 6.3 (4°C)
in the absence (black bar) or presence of 10 mmol/L G-6-P (gray
bar, G-6-P). (C) H2O2 accumulation monitored in the fibers
described in (A), respiring in State 3 and monitored in the absence
(black bar) or presence of 12.5 lmol/L exogenous cytochrome c
(gray bar, +Cc). Data are presented as means�SEM. For each
individual fiber preparations, the data from 2 fibers were averaged.
(A) Cont (n=5), CP Isch (n=4), IP Isch (n=3), ANOVA P=0.0149,
*P<0.05 vs CP Isch +Cc. (B) Cont (n=12), CP Isch (n=8), IP Isch
(n=9), Cont+G-6-P (n=5), CP Isch+G-6-P (n=4), IP Isch+G-6-P (n=3),
ANOVA P<0.0001 among all groups, *P<0.05 vs Cont+G-6-P. (C)
Cont (n=5), CP Isch (n=5), IP Isch (n=3), ANOVA among groups
without Cc P<0.0001, *P<0.05 vs CP Isch+Cc, **P=0.088 vs IP
Isch+Cc. Cont indicates normoxic fibers, CP Isch: ischemic fibers,
IP Isch: preconditioned ischemic fibers; CP, control; Ac, sodium
acetate; HG, high glucose; CaC, calcium challenge; IP, ischemic
preconditioning; mtHK2, mitochondria-bound hexokinase 2; G-6-P,
glucose-6-phosphate; OMM, outer mitochondrial membrane.
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fibers isolated from ischemic hearts provide no evidence for
this. Thus, dissociation of mtHK2 via incubation with G-6-P at
pH 6.3 was without effect on cytochrome c stimulation of

either state 3 respiration or H2O2 production (Figure 10).
These data demonstrate that dissociation of mtHK2 alone
does not induce OMM permeabilization and imply that
additional factors must be required. Activation of proapoptotic
members of the Bcl2 family is an obvious possibility because
ischemia is associated with the loss of Bcl-xL (Figures 3A and
3B). However, after ischemia, IP hearts show as much loss of
Bcl-xL as control hearts, yet treatment of fibers with G-6-P at
pH 6.3 to dissociate mtHK2 was still without effect on
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Figure 11. mtHK2 influences the rate of mitochondrial PCr
synthesis in vitro. Normoxic control fibers were permeabilized and
washed twice in solution B at pH 6.3 (4°C) in the absence (Cont) or
presence of G-6-P 15 mmol/L (+G-6-P). Fibers were incubated with
stirring in the presence of ADP 1 mmol/L, creatine 10 mmol/L, and,
where indicated, glucose 5 mmol/L (Glc) for 5 minutes as described
in Materials and Methods. In a separate group of experiments fibers
were incubated as described earlier in a medium supplemented with
carboxyatractyloside 5 lmol/L (Cat). (A) G-6-P output of permeabi-
lized fibers. (B) Mitochondrial PCr output of permeabilized fibers. (C)
Mitochondrial ATP output of permeabilized fibers. For each individual
fiber preparation (ie, n number), the data from 2 fibers were
averaged. (A) Cont (n=7) and Cont+G-6-P (n=9). (B and C) Cont no
addition (n=7), Cont+Glc (n=3), Cont+Cat (n=3), +G-6-P no further
addition (n=7), +G-6-P+Glc (n=3), and +G-6-P+Cat (n=3). (B) *P<0.05
vs Cont with Cat, **P<0.05 vs +G-6-P with Cat. (C) *P<0.05 vs Cont
with Cat, **P<0.05 vs +G6P with Cat. mtHK2 indicates mitochon-
dria-bound hexokinase 2; G-6-P, glucose-6-phosphate; PCr, phos-
phocreatine.
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Figure 12. mtHK2 influences the rate of mitochondrial PCr
synthesis ex vivo. Two groups of hearts were perfused according
to the protocol described in Figure 1. (A and B) PCr and ATP content
during the first 90 seconds of reperfusion measured in freeze-
clamped hearts characterized by either low or high end-ischemic
mtHK2 content (CP+HG and IP+Ac, respectively—see Figure 8). (C)
End-diastolic pressure (EDP) for the same hearts. Data are presented
as means�SEM of 4 individual hearts per condition and time point.
(A) *P=0.032 vs CP+HG 15 seconds, **P=0.012 vs CP+HG 30 sec-
onds, ***P=0.039 vs CP+HG 45 seconds, #P=0.0159 vs CP+HG
90 seconds. mtHK2 indicates mitochondria-bound hexokinase 2;
CP, control; Ac, sodium acetate; HG, high glucose; CaC, calcium
challenge; IP, ischemic preconditioning; PCr, phosphocreatine.
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cytochrome c stimulation of either state 3 respiration or H2O2

production (Figure 10). These data imply that yet another
mechanism must play a critical role in OMM permeabilization,

and our data suggest that this may be the disruption of
contact sites between the IMM and OMM during ischemia.

Disruption of Mitochondrial Contact Sites May Be
Critical for OMM Permeabilization
Mitochondrial HK2 has been shown to associate with contact
sites that link the IMM and OMM. Contact sites are thought to
contain several proteins including VDAC1 and the peripheral
benzodiazepine receptor (also known as translocator protein)
of the OMM and ANT of the IMM. They may also represent the
binding site of members of the Bcl2 family.32 Their disruption
is thought to enhance the permeability of the OMM to
cytochrome c and to increase the sensitivity of the mPTP to
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Figure 13. Effects of mPTP inhibition on heart bioenergetic status
during early reperfusion after 30 minutes of ischemia. Hearts were
perfused according to the protocols described in Figure 1 (see CP
+HG group). After 30 minutes of ischemia and 30 seconds of
reperfusion (I/R [30 seconds]), hearts were freeze-clamped and then
grounded in liquid nitrogen. Phosphocreatine (PCr) and ATP were
determined by enzymatic assay as described in Materials and
Methods. (A) Content of ATP and PCr obtained in a normoxic control
group (n=6). (B) PCr content in the group CP+HG (Cont) treated for
15 minutes before ischemia and during 30 seconds of reperfuson
with cyclosporin A 0.2 lmol/L (+CsA) or N-(2-mercaptopropionyl-
glycine) 2 mmol/L (+MPG). (B and C) n=4 in each group. mPTP
indicates mitochondrial permeability transition pore; CP, control; HG,
high glucose.
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Figure 14. Effects of ischemia on G-6-P accumulation and intra-
cellular pH. (A) Hearts were perfused according to the protocol
described in Figure 1. Hearts were then freeze-clamped before
ischemia or after 10 minutes of global ischemia (Isch) and their
content in G-6-P was assessed as described in Materials and
Methods. Data are presented as means�SEM, n=4 for each group.
(A) ANOVA P=0.0009 among preischemic groups and P=0.0026
among ischemic groups, *P<0.05 vs CP, **P<0.05 vs CP Isch. (B)
Data represent the evolution of the Langendorff-perfused rat heart
intracellular pH during global ischemia monitored by 31P NMR. Data
were extracted from the following publications27,36–42 and plotted
using Microsoft Excel. G-6-P indicates glucose-6-phosphate; CP,
control; Ac, sodium acetate; HG, high glucose; CaC, calcium
challenge; IP, ischemic preconditioning.
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[Ca2+].31,32 Indeed, this may explain how ligands of the
translocator protein can inhibit mPTP opening44 and mediate
protection from ischemia–reperfusion injury.45 Importantly,
contact sites can be disrupted by elevated matrix [Ca2+],31,46

and the extent of [Ca2+] increase at the end of ischemia has
been shown to be a good indicator of subsequent cell death in
an isolated myocyte model of ischemia–reperfusion.47 Fur-
thermore, there is evidence that contact sites are decreased
after ischemia33 and that hearts from mice deficient in
mitochondrial creatine kinase are more sensitive to ischemia–
reperfusion injury.48

A key role of contact sites in the normal heart is thought to
be the efficient transport of mitochondrial ATP to the cytosol
as PCr.32,33 Indeed, there is good evidence for an impairment
of the PCr shuttle after ischemia,49 which is improved after
IP.50 Thus, if mtHK2 is involved in stabilizing the contact sites,
its dissociation should be reflected in a decreased rate of PCr
output from the mitochondria. This is what we observed after
preincubation of permeabilized fibers with G-6-P at pH 6.3,

although the effect was only observed when glucose was also
present to enable HK2 activity (Figure 11B). The reason for
this glucose requirement is not known, but others have
reported that the protective effect of mtHK binding on cell
survival also requires the presence of glucose.51 To assess
the extent of contact site disruption at the end of 30 minutes
of ischemia in situ and its relationship to mtHK2 binding, we
used initial rates of PCr synthesis in the first phase (15 to 90
seconds) of reperfusion. As predicted, we observed that the
control plus high-glucose hearts (greatest loss of mtHK2 and
infarct size) displayed significantly slower rates of PCr
recovery on reperfusion than did the IP plus acetate hearts
(highest mtHK2 and smallest infarct size) (Figures 9A and
12A). This effect is unlikely to be secondary to mPTP opening
because the deoxyglucose entrapment technique shows
mPTP opening does not occur in the first 2 minutes of
reperfusion when pHi remains at pH <7.10 Furthermore, we
observed no differences in the ATP content between these 2
groups of hearts. Nor did pretreatment with CsA 0.2 lmol/L
or MPG 2 mmol/L for 15 minutes before ischemia and during
reperfusion (to inhibit mPTP opening) have any effect on PCr
or ATP levels. Thus, our data are entirely consistent with the
hypothesis that maintaining mtHK2 binding during ischemia
reduces contact site disruption.

Conclusions
The data we present in this article support the hypothesis that
a critical factor in the determining the extent of damage
(infarct size) during reperfusion after ischemia is loss of HK2
bound to mitochondria. This is entirely consistent with the
demonstration that hearts from heterozygous HK2 knockout
mice are more sensitive to ischemia–reperfusion injury.52 We
propose that this, together with increased [Ca2+], destabilizes
contact sites during ischemia and enables cytochrome c
permeation across the OMM. This is mediated by channels
formed by unmasking proapoptotic members of the Bcl2
family such as Bax and Bak already in the OMM. We suggest
that this unmasking is caused by a loss of Bcl-xL which might
be mediated by proteolytic degradation involving caspases or
calpains, inhibitors of which have been shown to be cardio-
protective.53 Cytochrome c loss will lead to greater ROS
production8, at least in part accounting for the oxidative
stress observed after ischemia–reperfusion that results in
mPTP opening.1 The loss of mtHK2 will also lead to inhibition
of ATP channeling from the mitochondria to the cytoplasm
and thus impaired reuptake of Ca2+ into the sarcoplasmic
reticulum, as has been observed in creatine kinase–deficient
mice.48 This, in turn, will lead to a greater uptake of Ca2+ into
the mitochondria, which, in conjunction with the oxidative
stress, will induce mPTP opening.1 By preventing mtHK2
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Figure 15. Effects of ischemia on L-lactate accumulation. Four
groups of hearts were perfused according to the protocol described
in Figure 1. Hearts were then freeze-clamped prior to ischemia (A) or
after 10 minutes of global ischemia (B) and their content in L-lactate
was determined as described in the Materials and Methods. Data are
presented as means�SEM, n=4 for each group of hearts. (B) ANOVA
among ischemic groups P<0.0001, *P<0.05 vs CP Isch. CP indicates
control; Ac, sodium acetate; HG, high glucose; CaC, calcium
challenge; IP, ischemic preconditioning.
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dissociation, IP will maintain contact sites and reduce OMM
permeabilization, leading to less oxidative stress and mito-
chondrial calcium overload and thus less mPTP opening and
necrotic damage (infarct). Stabilizing contact sites may also
inhibit mPTP opening directly,14,31 and this may provide an
additional mechanism by which mtHK2 dissociation sensitizes
the mPTP to [Ca2+].13,44 It should also be noted that mPTP
opening itself induces cytochrome c loss by OMM rupture and
increased ROS production, potentially leading to a cascading
opening
of the mPTP in adjacent mitochondria as reperfusion
continues.54,55

The hypothesis described here is summarized in Figure 16.
An attractive feature of this proposal is that it has the
potential to explain how a diverse range of known cardiopro-

tective regimes and signaling pathways might produce the
same final outcome of stabilizing contact sites, reducing OMM
permeabilization, and inhibiting mPTP opening. For example,
metabolic interventions might modulate mtHK2 binding
through changes in G-6-P levels and pHi secondary to
alterations in glycogen metabolism. The latter can be
regulated by a variety of kinase cascades including those
implicated in IP such as PKC, Akt, and GSK3b pathways.2,3

Such kinases might also influence mtHK2 binding through
other means including phosphorylation of OMM proteins such
as VDAC.56,57 Another target for regulation is members of the
Bcl2 family whose activity can also be regulated by phos-
phorylation, as well as proteolysis and translocation.58

Although the proposals of Figure 16 are appealing, we
recognize that the methods we have used to study mitochon-
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Figure 16. Scheme illustrating how mtHK2 dissociation might influence mPTP opening during reperfusion. During ischemia glucose catabolism
leads to accumulation of G-6-P and H+ that causes mtHK2 dissociation. This, in combination with increased cytosolic [Ca2+] may induce
mitochondrial contact site (MiCS) disruption. In parallel Bcl-xL content decreases and together these factors induce OMM permeabilization and
cytochrome c release. During early reperfusion, restoration of physiological pH is accompanied by cytosolic and mitochondrial Ca2+ overload.
Mitochondrial PCr output is impaired as a result of mtHK2 dissociation and MiCS disruption. This deficit in PCr may impair Ca2+ reuptake by the
sarcoplasmic reticulum, leading to a more pronounced cytosolic and mitochondrial Ca2+ overload. The latter, in combination with the ROS
produced during reperfusion as a result of cytochrome c release, would greatly favor mPTP opening and consequently lead to the development of
ischemia–reperfusion injury. mtHK2 indicates mitochondria-bound hexokinase 2; mPTP, permeability transition pore; OMM, outer mitochondrial
membrane; ROS, reactive oxygen species; PCr, phosphocreatine. SERCA, sarcoendoplasmic reticulum calcium transport ATPase.
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drial contact sites and their role in OMM permeabilization and
mPTP opening are indirect. To test our hypothesis further, it
will be necessary to find more direct ways of determining
mitochondrial contact sites in situ.
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