Resting Heart Rate and the Risk of Microvascular Complications in Patients With Type 2 Diabetes Mellitus

Graham S. Hillis, MBChB, PhD; Jun Hata, MD, PhD; Mark Woodward, PhD; Vlado Perkovic, MBBS, PhD; Hisatomi Arima, MD, PhD; Clara K. Chow, MD, PhD; Sophia Zoungas, MBBS, PhD; Anushka Patel, MBBS, PhD; Neil R. Poulter, MD; Giuseppe Mancia, MD, PhD; Bryan Williams, MD; John Chalmers, MD, PhD

Background—A higher resting heart rate is associated with an increased probability of cardiovascular complications and premature death in patients with type 2 diabetes mellitus. The impact of heart rate on the risk of developing microvascular complications, such as diabetic retinopathy and nephropathy, is, however, unknown. The present study tests the hypothesis that a higher resting heart rate is associated with an increased incidence and a greater progression of microvascular complications in patients with type 2 diabetes mellitus.

Methods and Results—The relation between baseline resting heart rate and the development of a major microvascular event was examined in 11 140 patients who participated in the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) study. Major microvascular events were defined as a composite of new or worsening nephropathy or new or worsening retinopathy. Patients with a higher baseline heart rate were at increased risk of a new major microvascular complication during follow-up (adjusted hazard ratio: 1.13 per 10 beats per minute; 95% confidence interval: 1.07–1.20; P<0.001). The excess hazard was evident for both nephropathy (adjusted hazard ratio: 1.16 per 10 beats per minute; 95% confidence interval: 1.08–1.25) and retinopathy (adjusted hazard ratio: 1.11 per 10 beats per minute; 95% confidence interval: 1.02–1.21).

Conclusion—Patients with type 2 diabetes mellitus who have a higher resting heart rate experience a greater incidence of new-onset or progressive nephropathy and retinopathy.

Key Words: diabetes mellitus, type 2 • heart rate • microcirculation

Microalbuminuria and retinopathy are indicators of microvascular dysfunction, and both predict a poorer outcome in patients with diabetes1–3 and in individuals with normal glycemic control.4,5 In particular, even mild degrees of microalbuminuria are a strong and independent predictor of major cardiac events in the general population6,7 and among patients with diabetes4 and hypertension.8 Likewise, several studies have reported an association between a higher resting heart rate and an increased risk of cardiovascular complications in unselected populations and in patients with cardiac disease.9,10 Recently, we reported a similar relation between resting heart rate and all-cause death, cardiovascular death, and major cardiovascular events in patients with type 2 diabetes mellitus.11 This was not attenuated after adjustment for other factors that influence heart rate and outcome.11

Although a growing volume of data supports an association between higher resting heart rate and a greater risk of macrovascular events in patients with type 2 diabetes, the impact of heart rate on the risk of developing microvascular complications, such as diabetic retinopathy and nephropathy, is unknown. There are, however, reasons to suspect that an elevated resting heart rate might predict microvascular outcomes in this setting. In patients with hypertension, a higher resting heart rate has been associated with a greater prevalence of microalbuminuria,12,13 a relation that was...
Heart Rate and Microvascular Complications

Hillis et al

DOI: 10.1161/JAHA.112.002832

Journal of the American Heart Association

Detailed study methods19 and the main results17,18 of the June 2001 and March 2003.17,18 The study made 2 random-
diabetes mellitus from 215 centers in 20 countries between
The ADVANCE study recruited 11,140 patients with type 2
diabetes mellitus after the age of 30 years. In
addition, they were required to have a history of cardiovas-
tional disease or ≥1 additional cardiovascular risk factor.19
Detailed study methods19 and the main results17,18 of the
ADVANCE study have been reported previously.

Heart rate was measured at the same time as blood
pressure with a digital monitor (Omron HEM-705CP, Omron
Healthcare Inc, Lake Forest, IL). Recordings were made after
the patient had been resting in a seated position for a
minimum of 5 minutes. Three readings were taken, and the
mean of the latter 2 was used. Weight, height, urinary ACR,
sodium creatinine, fasting lipid levels, and glycosylated hemo-
globin also were measured at baseline.

The present study assesses the relation between resting
heart rate and the development of a major microvascular event
(a coprimary endpoint of the ADVANCE study) over the length of
the trial (median follow-up of 4.4 years). Major microvascular
events were defined, a priori, as a composite of new or
worsening nephropathy or retinopathy. The former was defined
as ≥1 of the following: the development of macroalbuminuria,
defined as a urinary ACR of >300 µg albumin per milligram of
creatinine (confirmed by 2 positive results); doubling of the
serum creatinine level to ≥200 µmol/L (unless in the context of
acute illness, with subsequent recovery of renal function, or in
the context of the terminal phase of illness); the need for renal
replacement therapy due to diabetic kidney disease, in the
absence of another acute medical cause that could require
transient dialysis; or death due to renal disease. Participants
had their creatinine levels measured as part of the study
protocol at baseline, 4 months, and 1 year and annually
thereafter until completion of the study. Renal function was
checked out with these time points at the discretion of their
treating clinicians. Urinary ACR was measured locally as part of
the study protocol at baseline, 2 years, 4 years, and completion
of the study. New or worsening retinopathy was defined as ≥1 of
the following: the development of proliferative retinopathy
(identified by the incidence of new blood vessels on the disc or
elsewhere, vitreous hemorrhage, preretinal hemorrhage,
fibrous proliferations on the disc or elsewhere in a participant
known not to have this condition at entry); macular edema
(characterized by a retinal thickening within 1 disc diameter of
the macular center, in a participant known not to have this
condition at entry); diabetes-related blindness (corrected visual
acuity 3/60 or worse, persisting for ≥3 months and known to
not be due to nondiabetic causes, in a participant known not to
have this condition at entry); or the use of retinal photocoag-
ulation therapy. Participants underwent formal eye examination
and visual acuity testing at baseline, 2 years, 4 years, and
completion of the study.

Secondary endpoints were the individual components of
the primary outcome (new or worsening nephropathy and new
or worsening retinopathy). An Endpoint Adjudication Commit-
tee, unaware of treatment allocation, reviewed source docu-
mentation for all individuals who had a suspected primary
endpoint of the ADVANCE study. This included all the
microvascular endpoints considered in the present analyses.

Methods

The ADVANCE study recruited 11,140 patients with type 2
diabetes mellitus from 215 centers in 20 countries between
June 2001 and March 2003.17,18 The study made 2 random-
ized comparisons: (1) a double-blind assessment of the
efficacy of a fixed-combination perindopril–indapamide (2
mg/0.625 mg for 3 months, increasing, if tolerated, to 4 mg/
1.25 mg) versus placebo and (2) an open-label evaluation of an
intensive glucose-lowering regimen with modiﬁed-release
gliclazide, with a target hemoglobin A1c of ≤6.5%, versus
standard guideline-based glycemic control. The study was
approved by the local ethics committee for each participating
center, and all participants provided written informed consent.

Participants were ≥55 years of age and had been diagnosed
with type 2 diabetes mellitus after the age of 30 years. In
addition, they were required to have a history of cardiovas-
cular disease or ≥1 additional cardiovascular risk factor.19
Detailed study methods19 and the main results17,18 of the
ADVANCE study have been reported previously.

Heart rate was measured at the same time as blood
pressure with a digital monitor (Omron HEM-705CP, Omron
Healthcare Inc, Lake Forest, IL). Recordings were made after
the patient had been resting in a seated position for a
minimum of 5 minutes. Three readings were taken, and the
mean of the latter 2 was used. Weight, height, urinary ACR,
sodium creatinine, fasting lipid levels, and glycosylated hemo-
globin also were measured at baseline.
were performed in models adjusted for age, sex, ADVANCE study blood pressure treatment arm, and ADVANCE study glycemic control arm and in models adjusted for multiple baseline covariates (age, sex, ADVANCE study randomized treatment, body mass index, duration of diabetes, glycosylated hemoglobin, estimated glomerular filtration rate, urinary ACR, systolic blood pressure, diastolic blood pressure, history of a prior macrovascular complication of diabetes [myocardial infarction, stroke, hospital admission for a transient ischemic attack, hospital admission for unstable angina, coronary revascularization, peripheral revascularization or amputation secondary to peripheral vascular disease], history of hospitalization for heart failure, participation in moderate or vigorous exercise for >15 minutes at least once weekly, current cigarette smoking, total cholesterol, triglycerides, atrial fibrillation, treatment with calcium channel blockers, and treatment with β-blockers). Interactions were tested by adding appropriate terms to Cox models. Linearity was assessed by comparing the categorical model with the linear trend model. It is possible that death during follow-up might affect the association between heart rate and the outcomes of interest. Therefore, we estimated subdistribution hazard ratios after correcting for the competing risk of death according to the methods of Fine and Gray. Odds ratios and 95% confidence intervals for albuminuria at baseline and microvascular diabetic eye disease at baseline among the fifths of heart rate were estimated by logistic regression. Analyses were performed in SAS v9.2 (SAS Institute, Cary, NC), SPSS v18 (SPSS Inc., Chicago, IL), and Stata 11 (Statacorp LP, College Station, TX), and all reported P values are 2 sided, with the 5% threshold used to determine significance.

Results
Of the 11,140 patients randomized into the ADVANCE study, 2 individuals did not have their baseline resting heart rate recorded. The remaining 11,138 patients are included in the present analyses. Participants had a mean age of 66 years, and 58% were male. The mean heart rate in the study population, ± standard deviation, was 74±12 beats per minute, with a range of 33 to 140 beats per minute. The characteristics of the study population according to baseline resting heart rate are shown in Table 1.

Heart Rate and Microvascular Disease at Baseline
At baseline, 793 patients (7.1%) had microvascular diabetic eye disease (proliferative retinopathy, retinal photocoagulation therapy, macular edema, or blindness in at least one eye thought to be due to diabetes). These individuals had a mean resting heart rate of 76±12 beats per minute, compared to 74±12 beats per minute in patients without microvascular eye disease at baseline (P<0.001). At the time of randomization, 7376 participants (66.2%) had normal urinary albumin levels (urinary ACR <3.4 mg/mmol [<30 µg/mg]), 2861 (25.7%) had microalbuminuria (urinary ACR 3.4–33.9 mg/mmol [30–300 µg/mg]), and 401 (3.6%) had macroalbuminuria (urinary ACR >33.9 mg/mmol [>300 µg/mg]). Five hundred patients (4.5%) had missing ACR data. Figure 1 shows the prevalence of albuminuria according to baseline resting heart rate (P for trend <0.001). The age- and sex-adjusted and multivariable-adjusted odds ratios for (a) albuminuria and (b) microvascular diabetic eye disease at baseline according to fifth of resting heart rate (with the lowest fifth as the reference) are shown in Tables 2 and 3. These data confirm a cross-sectional association between baseline heart rate and both complications.

Heart Rate and Microvascular Complications
During a median follow-up of 4.4 years, 916 patients (8.2%) experienced a major microvascular event. Three hundred and ninety-seven patients (3.6%) developed new or worsening nephropathy, and 575 (5.2%) developed new or worsening retinopathy. Fifteen patients were lost to follow-up (vital status unknown) at the end of follow-up and were censored at the last follow-up assessment. In addition, 879 patients (7.9%) died during follow-up. Patients who died before the occurrence of each outcome were censored at the time of death (786 patients for major microvascular events, 840 for retinopathy, and 817 for nephropathy were censored at the date of death).

A higher baseline resting heart rate was associated with a greater risk of developing a major microvascular complication during follow-up (Table 4). After adjustment for age, sex, and randomized treatment, a 10-beats-per-minute increase in baseline resting heart rate was associated with an 18% increase in the observed hazard. This remained after adjustment for potential confounders. The excess hazard was apparent for both components of the primary outcome (nephropathy and retinopathy) but was greater for the development of new or worsening diabetic eye disease (Table 4), where a clear linear relation is apparent. In contrast, the relation between heart rate and nephropathy is nonlinear, with the excess hazard, relative to the lowest fifth, only seen clearly in patients with a heart rate in the upper fifth (Table 4). The risk estimates were essentially unchanged even after correction for the competing risk of death (data not shown).

The increased risk of microvascular complications associated with a higher heart rate was observed in both sexes, in patients who had suffered a prior major macrovascular complication (myocardial infarction, stroke, hospital admission for a transient ischemic attack, hospital admission for angina, coronary revascularization, peripheral revascularization, or amputation secondary to peripheral vascular disease) and in those who had not (Figure 2). Similarly, an excess hazard was seen in patients both with and without preexisting microvascular disease (Figure 2). It also was observed in patients who were not...
Table 1. Baseline Characteristics by Baseline Fifths of Heart Rate

<table>
<thead>
<tr>
<th></th>
<th>Total (n=11 138)</th>
<th>Lowest Fifth (n=2066)</th>
<th>2nd Fifth (n=2393)</th>
<th>3rd Fifth (n=2178)</th>
<th>4th Fifth (n=2195)</th>
<th>Highest Fifth (n=2306)</th>
<th>P for Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate, bpm, mean (range)</td>
<td>74 (33–140)</td>
<td>57 (33–63)</td>
<td>67 (64–70)</td>
<td>74 (71–76)</td>
<td>80 (77–83)</td>
<td>91 (84–140)</td>
<td>…</td>
</tr>
<tr>
<td>Age, y, mean±SD</td>
<td>65.8±6.4</td>
<td>67.1±6.3</td>
<td>65.9±6.4</td>
<td>65.5±6.5</td>
<td>65.5±6.4</td>
<td>65.1±6.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>4733 (42)</td>
<td>664 (32)</td>
<td>989 (41)</td>
<td>973 (45)</td>
<td>1050 (48)</td>
<td>1057 (46)</td>
<td><0.001</td>
</tr>
<tr>
<td>Active treatment arm for blood pressure, n (%)</td>
<td>5568 (50)</td>
<td>1024 (50)</td>
<td>1195 (50)</td>
<td>1072 (49)</td>
<td>1127 (51)</td>
<td>1150 (50)</td>
<td>0.56</td>
</tr>
<tr>
<td>Active treatment arm for glycemic control, n (%)</td>
<td>5570 (50)</td>
<td>1007 (49)</td>
<td>1216 (51)</td>
<td>1050 (48)</td>
<td>1098 (50)</td>
<td>1199 (52)</td>
<td>0.09</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg, mean±SD</td>
<td>145±22</td>
<td>147±22</td>
<td>144±21</td>
<td>143±21</td>
<td>145±21</td>
<td>146±21</td>
<td>0.18</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg, mean±SD</td>
<td>81±11</td>
<td>79±11</td>
<td>80±11</td>
<td>81±11</td>
<td>81±11</td>
<td>82±11</td>
<td><0.001</td>
</tr>
<tr>
<td>Body mass index, kg/m², mean±SD</td>
<td>28.3±5.2</td>
<td>28.8±5.0</td>
<td>28.5±5.0</td>
<td>28.2±5.3</td>
<td>28.2±5.2</td>
<td>28.2±5.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Current cigarette smoker, n (%)</td>
<td>1550 (14)</td>
<td>234 (11)</td>
<td>314 (13)</td>
<td>333 (15)</td>
<td>324 (15)</td>
<td>345 (15)</td>
<td><0.001</td>
</tr>
<tr>
<td>Regular exercise, n (%)</td>
<td>5112 (46)</td>
<td>1029 (50)</td>
<td>1149 (48)</td>
<td>994 (46)</td>
<td>970 (44)</td>
<td>970 (42)</td>
<td><0.001</td>
</tr>
<tr>
<td>History of myocardial infarction, n (%)</td>
<td>1334 (12)</td>
<td>392 (19)</td>
<td>316 (13)</td>
<td>251 (12)</td>
<td>205 (9)</td>
<td>170 (7)</td>
<td><0.001</td>
</tr>
<tr>
<td>History of stroke, n (%)</td>
<td>1022 (9)</td>
<td>168 (8)</td>
<td>197 (8)</td>
<td>198 (9)</td>
<td>217 (10)</td>
<td>242 (10)</td>
<td><0.001</td>
</tr>
<tr>
<td>History of hospitalization for heart failure, n (%)</td>
<td>356 (3)</td>
<td>66 (3)</td>
<td>71 (3)</td>
<td>66 (3)</td>
<td>71 (3)</td>
<td>82 (4)</td>
<td>0.38</td>
</tr>
<tr>
<td>Previous or current atrial fibrillation, n (%)</td>
<td>846 (8)</td>
<td>199 (10)</td>
<td>154 (6)</td>
<td>128 (6)</td>
<td>173 (8)</td>
<td>192 (8)</td>
<td>0.68</td>
</tr>
<tr>
<td>Prior macrovascular disease, n (%)</td>
<td>3589 (32)</td>
<td>843 (41)</td>
<td>806 (34)</td>
<td>677 (31)</td>
<td>630 (29)</td>
<td>633 (27)</td>
<td><0.001</td>
</tr>
<tr>
<td>Prior microvascular disease, n (%)</td>
<td>1152 (10)</td>
<td>179 (9)</td>
<td>249 (10)</td>
<td>206 (9)</td>
<td>242 (11)</td>
<td>276 (12)</td>
<td><0.001</td>
</tr>
<tr>
<td>Serum total cholesterol, mmol/L, mean±SD</td>
<td>5.20±1.19</td>
<td>4.94±1.08</td>
<td>5.14±1.17</td>
<td>5.21±1.20</td>
<td>5.30±1.18</td>
<td>5.37±1.27</td>
<td><0.001</td>
</tr>
<tr>
<td>Serum triglycerides, mmol/L, mean±SD</td>
<td>1.96±1.29</td>
<td>1.84±1.14</td>
<td>1.88±1.15</td>
<td>1.91±1.21</td>
<td>2.04±1.35</td>
<td>2.11±1.52</td>
<td><0.001</td>
</tr>
<tr>
<td>Duration of diabetes, y, mean±SD</td>
<td>7.9±6.4</td>
<td>7.7±6.6</td>
<td>7.6±6.3</td>
<td>8.0±6.5</td>
<td>8.2±6.2</td>
<td>8.2±6.2</td>
<td><0.001</td>
</tr>
</tbody>
</table>
on a β-blocker but not in those who were on a β-blocker (Figure 2), although there was no statistical evidence of an interaction. A higher heart rate was associated with a greater risk of a microvascular complication both in patients who were in sinus rhythm and those with atrial fibrillation (on an electrocardiogram performed either at baseline or previously).

Discussion

The present study demonstrates that a higher resting heart rate predicts a greater risk of future microvascular complications in patients with type 2 diabetes mellitus. As far as we are aware, this has not been shown previously. The excess hazard associated with a higher heart rate is independent of many other factors that can influence heart rate and affect outcome in this setting. The association is particularly apparent for the occurrence or worsening of diabetic eye disease but is also evident for the occurrence or worsening of diabetic nephropathy.

Heart Rate and Microvascular Events

The relation between higher heart rates and major adverse cardiac events, such as myocardial infarction, cardiac death, and hospitalization with heart failure, is now well recognized. Indeed, we recently reported in ADVANCE that a higher heart rate was a strong and independent predictor of all-cause death and major cardiovascular complications, including cardiovascular death, myocardial infarction, and stroke. In contrast, there are limited prior data, almost entirely cross sectional, assessing the relation between heart rate and microvascular disease. In patients with hypertension, Bohm and colleagues reported that a higher heart rate is associated with increased
An association between a higher resting heart rate and prevalent retinopathy in patients with diabetes has been reported previously, although not consistently. In the Wisconsin Epidemiological Study of Diabetic Retinopathy, although patients with a higher resting heart rate had a greater risk of incident macular edema and progressive diabetic retinopathy over a 4-year period, this was attenuated and was nonsignificant after correction for other factors, including age, duration of diabetes, glycosylated hemoglobin, and blood pressure. In contrast, in our much larger cohort, followed up for 4.4 years, we have observed strong and independent associations between resting heart rate and incident and progressive diabetic eye disease, even after correction for a wide range of potential confounding factors (including all of those mentioned above). Apart from differences in power, the discrepant results could reflect variances in the study populations and protocols. The Wisconsin Epidemiological Study of Diabetic Retinopathy recruited a community-based cohort with a high prevalence of younger, insulin-requiring patients, and the incidence and progression of retinopathy was determined with fundus photography.

Potential Mechanisms

Although a higher resting heart rate predicts a greater prevalence of albuminuria and diabetic eye disease at...
baseline and higher risk of subsequent microvascular events, the results could reflect an association between heart rate and other factors that might mediate microvascular disease. There are, however, several plausible mechanisms by which an elevated heart rate might predispose to such complications.

It has been suggested that a higher heart rate might promote microalbuminuria because of increased exposure of the glomerulus to arterial pressure waves.12 A similar mechanism also might explain the relation between more rapid heart rates and ocular disease. An increased heart rate also has a variety of direct detrimental cardiovascular consequences. These include unfavorable effects on endothelial function and proatherosclerotic activity,29 which are important factors in the progression of nephropathy and retinopathy.30–32

A higher heart rate also is associated with factors such as

<table>
<thead>
<tr>
<th>Table 4. Effects of Heart Rate on Major Microvascular Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Events/No. at Risk</td>
</tr>
<tr>
<td>Heart rate per 10 bpm</td>
</tr>
<tr>
<td>Major microvascular events</td>
</tr>
<tr>
<td>Heart rate per 10 bpm</td>
</tr>
</tbody>
</table>

Heart rate fifths					
Lowest fifth (33–63 bpm)	132/2066	1.00 (reference)		1.00 (reference)	
2nd fifth (64–70 bpm)	184/2393	1.23 (0.99–1.54)	0.07	1.27 (1.00–1.61)	0.047
3rd fifth (71–76 bpm)	161/2178	1.19 (0.94–1.49)	0.15	1.15 (0.90–1.47)	0.27
4th fifth (77–83 bpm)	194/2195	1.45 (1.16–1.81)	0.001	1.39 (1.09–1.76)	0.008
Highest fifth (84–140 bpm)	245/2306	1.78 (1.44–2.20)	<0.001	1.63 (1.29–2.06)	<0.001

| **P for trend** | 0.37 | 0.27 |

| **P for nonlinearity** | 0.005 | 0.003 |

| **New or worsening retinopathy** | | | | |
| Heart rate per 10 bpm | 575/11 138 | 1.22 (1.14–1.30) | <0.001 | 1.16 (1.08–1.25) | <0.001 |

Heart rate fifths					
Lowest fifth (33–63 bpm)	71/2066	1.00 (reference)		1.00 (reference)	
2nd fifth (64–70 bpm)	96/2393	1.15 (0.84–1.56)	0.38	1.13 (0.82–1.57)	0.46
3rd fifth (71–76 bpm)	115/2178	1.51 (1.12–2.03)	0.007	1.44 (1.05–1.98)	0.02
4th fifth (77–83 bpm)	139/2195	1.82 (1.36–2.43)	<0.001	1.67 (1.23–2.28)	0.001
Highest fifth (84–140 bpm)	154/2306	1.94 (1.46–2.57)	<0.001	1.72 (1.26–2.34)	<0.001

| **P for trend** | <0.001 | <0.001 |

| **P for nonlinearity** | 0.70 | 0.69 |

| **New or worsening nephropathy** | | | | |
| Heart rate per 10 bpm | 397/11 138 | 1.13 (1.04–1.22) | 0.003 | 1.11 (1.02–1.21) | 0.01 |

Heart rate fifths					
Lowest fifth (33–63 bpm)	69/2066	1.00 (reference)		1.00 (reference)	
2nd fifth (64–70 bpm)	93/2393	1.24 (0.91–1.70)	0.18	1.45 (1.04–2.02)	0.03
3rd fifth (71–76 bpm)	58/2178	0.86 (0.60–1.21)	0.38	0.90 (0.61–1.31)	0.57
4th fifth (77–83 bpm)	69/2195	1.05 (0.75–1.47)	0.78	1.10 (0.76–1.58)	0.61
Highest fifth (84–140 bpm)	108/2306	1.60 (1.18–2.17)	0.003	1.61 (1.15–2.26)	0.006

| **P for trend** | 0.02 | 0.05 |

| **P for nonlinearity** | 0.005 | 0.003 |

| **HR** indicates hazard ratio; CI, confidence interval. |
| **Adjusted for age, sex, randomized treatment for blood pressure, randomized treatment for glucose, body mass index, duration of diabetes, glycosylated hemoglobin, prior macrovascular complication of diabetes (see text), estimated glomerular filtration rate, urinary albumin:creatinine ratio, systolic blood pressure, diastolic blood pressure, history of hospitalization for heart failure, regular exercise (see text), current cigarette smoking, total cholesterol, triglycerides, atrial fibrillation, use of calcium channel antagonists, and use of β-blockers. |
Figure 2. Effects of baseline heart rate on major microvascular events in subgroups. Adjusted for age, sex, randomized treatment for blood pressure, randomized treatment for glucose, body mass index, duration of diabetes, glycosylated hemoglobin, prior macrovascular complication of diabetes (see text), estimated glomerular filtration rate, urinary albumin:creatinine ratio, systolic blood pressure, diastolic blood pressure, history of hospitalization for heart failure, regular exercise (see text), current cigarette smoking, total cholesterol, triglycerides, atrial fibrillation, use of calcium channel antagonists, and use of β-blockers. Where relevant, the variable used for subgrouping was excluded from the model. Centers of boxes are placed at the estimates of adjusted hazard ratio (HR) for each subgroup. Areas of the boxes are proportional to the reciprocal of the variance of the estimates. Horizontal lines represent 95% confidence intervals (CI). Vertical broken lines indicate the estimate of overall adjusted hazard ratio. The widths of diamonds represent 95% CI. bpm indicates beats per minute.
obesity, higher blood pressure, a proatherosclerotic lipid profile, and reduced physical activity, all of which are associated with an increased risk of microvascular complications and are targets for intervention to improve outcome in patients with diabetes mellitus.34 Finally, a faster resting heart rate is a characteristic feature of autonomic neuropathy, which is in turn associated with an increased prevalence of other complications, such as nephropathy and retinopathy.35 It is possible, therefore, that the observed relation between heart rate and microvascular events is mediated at least in part by sympathetic overactivity, although correlations between heart rate and measures of sympathetic tone are relatively weak.36

When baroreflex control of heart rate is assessed by sensitive methods, abnormalities are apparent at an early stage in patients with diabetes. These changes predate obvious diabetic complications and evidence of autonomic dysfunction that can be detected by conventional methods.37,38 Intriguingly, a higher heart rate per se also has been shown to predict an increased risk of developing incident diabetes.39 This could reflect physical deconditioning and other factors that predispose to developing diabetes but reinforces the complex interrelations among heart rate, neural mechanisms, and metabolic control.

It could be that the observed hazard associated with a higher heart rate is due to a combination of mechanisms and that the importance of each varies among individuals. Likewise, the mechanisms could have synergistic effects. For example, a higher heart rate might result in direct microvascular damage, but this could be accentuated by the presence of hypertension. In particular, elevated nocturnal blood pressure in diabetes is associated with incident microalbuminuria40 and progressive nephropathy.41 The risk attributable to this “nondipping” pattern might not be conveyed in the measured daytime blood pressure and might be magnified by a higher resting heart rate, which increases exposure of the microvasculature to the elevated pressures.

In summary, the mechanisms by which a higher resting heart rate predicts an increased risk of microvascular complications in type 2 diabetes mellitus are unclear, and it could be that several interrelated processes are involved. One potential method of assessing whether there might be a direct relation would be to assess the effects of a pure rate-limiting drug, such as ivabradine, on microvascular outcomes.

Differences in the Observed Relation Between Heart Rate and Eye Disease and Nephropathy

In this analysis, the relation between resting heart rate and the risk of developing diabetic eye disease seems stronger than the association with incident nephropathy. In addition, in contrast to retinopathy, the data suggest that the relation between heart rate and renal disease is nonlinear, with the excess hazard clearly seen only in patients with a resting heart rate in the upper fifth. Similarly, in the baseline, cross-sectional data, the increased prevalence of microalbuminuria is most obvious in patients with heart rates in the upper two fifths. This raises the possibility that the relation between heart rate and microvascular disease could vary in differing vascular beds. This is not unexpected, given that the effects of blood pressure–lowering treatment and more intensive glycemic control in the ADVANCE study were more apparent in the kidney than in the eye. Similar differential effects of treatment on differing microvascular complications have been observed in other large studies.42,43 Whether this reflects differing pathophysiological mechanisms, is a chance finding, or is due to the definitions used and the relatively short duration of follow-up is not clear.

Strengths and Limitations

The present study explores the relation between heart rate and future microvascular complications in patients with type 2 diabetes mellitus in a large population recruited from 20 countries and with diverse ethnic backgrounds, which was well characterized and followed up closely. The primary endpoint of this epidemiological evaluation was a coprimary endpoint of the main ADVANCE study, and all components of it were independently adjudicated according to predefined criteria. Nevertheless, it has the limitations inherent in any such post hoc analysis. Although the large study population ensures considerable statistical power and allows reliable correction for many potential confounding factors, it is not possible to fully correct for all possible confounders. In particular, autonomic function was not assessed at baseline.

Conclusion

Patients with type 2 diabetes mellitus who have a higher resting heart rate have a greater prevalence of microalbuminuria and diabetic eye disease. They also experience a greater incidence of new-onset or progressive nephropathy and retinopathy, which suggests that an increased heart rate might be a potential mediator of these outcomes. Further work is required to assess this and to determine whether lifestyle measures or pharmacological therapies that can slow heart rate might reduce the risk of microvascular complications. In particular, the benefits of heart rate reduction in the prevention of progressive diabetic retinopathy deserve further attention.

Sources of Funding

The ADVANCE study was funded by Servier and the National Health and Medical Research Council of Australia (grant Nos.
211086 and 358395). Neither funding body had any input into the analysis or interpretation of the present data.

Disclosures

Drs Woodward, Zoungas, Patel, Poulter, Mancia, Williams, and Chalmers have received lecture fees and/or travel expenses from Servier. Drs Woodward, Zoungas, Patel, Poulter, and Chalmers have also received grant support from Servier.

References

Resting Heart Rate and the Risk of Microvascular Complications in Patients With Type 2 Diabetes Mellitus

J Am Heart Assoc. 2012;1:e002832; originally published September 26, 2012;
doi: 10.1161/JAHA.112.002832
The Journal of the American Heart Association is published by the American Heart Association, 7272 Greenville Avenue,
Dallas, TX 75231
Online ISSN: 2047-9980

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://jaha.ahajournals.org/content/1/5/e002832